LCA Informing Packaging Design
– a case study of COMPASS

Minal T. Mistry

Yale University School of Forestry & Environmental Studies
4 October 2011
discussion agenda

• Packaging design and LCA
• Introduce COMPASS – a streamlined packaging LCA tool
 – Data processing
 – Scenario testing
 – Web application
• Discussion – limitations, drivers and opportunities, etc.
• Evidence of progress in the industry
• Perform a simple design evaluation
packaging design and LCA
life cycle of packaging
early market trend

• Post market eco-footprint, rank or score
shift to design evaluation

- Benchmarking of current packaging portfolio
- Use LCA to screen and optimize design choices
influence of design

(downstream) →

BRANDS
- image
- perception/loyalty

DISTRIBUTION
- transport efficiency
- product loss

RETAIL
- on shelf differentiation
- product shelf life
- safety

CONSUMER
- product appeal
- security
- satisfaction

WASTE DISCARD
- effective recovery
- reduce disposal
influence of design

(upstream)

MARKET SIGNALS
• demand for sustainable sourcing
• reduced energy intensity
• reduced impacts
• chain of custody
• transparency
the LCA tools space
characteristics of LCA tools

• Tools for LCA practitioners
 – Traditional actors: SimaPro and GaBi
 – Up and coming: OpenLCA and Earthster…
 – Audience and uses

• Streamlined LCA tools for packaging
 – COMPASS, PIQET, PackageSmart, Quantis…
 – Characteristics
 – Audience and uses
COMPASS®
Comparative Packaging Assessment
COMPASS
GREENBLUE®

a design-phase web application that provides comparative environmental profiles of packaging alternatives based on life cycle assessment metrics and attributes
background

• Starting points:
 – SPC member driven initiative for a science based
design evaluation tool
 – MERGE™ (Managing Environmental Resources,
Guidance and Evaluation)

• Data assessment
 – GreenBlue, USEPA, and Walmart
 – EPA funding for transparent LCI data
consensus based development

SPC’s Vision of Sustainable Packaging

Industry Expertise

Life Cycle Expertise

NGO Input

US EPA Support

Metrics
metrics relevant to packaging

SPC Definition of Sustainable Packaging

Industry Expertise

Life Cycle Expertise

NGO Input

US EPA Support

CONSUMPTION METRICS
- FOSSIL FUEL
- WATER
- BIOTIC RESOURCES
- MINERAL RESOURCES

EMISSION METRICS
- GREENHOUSE GASES
- HUMAN HEALTH
- AQUATIC TOXICITY
- EUTROPHICATION

PACKAGING ATTRIBUTES
- CONTENT
- SOURCE
- SOLID WASTE

MATERIAL HEALTH

LCIA: IPCC 2007, CEN/TR 14980, TRACI, USEtox
life cycle data processing
• Consistent background data modeling for common packaging materials and processes
• Apples to apples comparisons based on common functional unit
• Region specific solid waste profiles
• Verified by industry and external reviewers
data sets

• Data sets for U.S., Canada, Europe
 – México and China (coming soon!)
 – Background data from ecoinvent and USLCI

• End of Life (EoL) treatments for packaging
 – Landfill, WtE, compost, incineration, litter

• EoL solid waste profile
 – Regional recover and discard information from USEPA, EuroStat, StewardEdge Canada
materials and processes

- **Polymers**
 - HDPE, LDPE, LLDPE, PET, PP, PS, EPS, PVC, PVDC, PLA, EVA, Nylon 6, PC, Modified starch (Mater-bi)
- **Fibers**
 - Solid Bleached and unbleached Sulfate Board (SBS and SUS), Recycled Folding Boxboard, Corrugated, Supercalendered Paper, Bleached and Unbleached Kraft Paper, Liquid Packaging Board
- **Metals**
 - Steel and aluminum
- **Container glass**

- **Polymers**
 - Blow molding
 - Extrusion, plastic film
 - Foaming, expanding
 - Injection molding
 - Stretch blow molding
 - Thermoforming, with calendaring
- **Fibers**
 - Production of paper bags
 - Production of carton
 - Production of corrugated boxes
 - Cutting
- **Metals**
 - Sheet rolling
 - Production of steel can
the model
build scenarios using components

SIMPLE COMPONENTS

COMPOSITE COMPONENTS
packaging system

- PRIMARY PACKAGE
- SECONDARY PACKAGE
- PACKAGING SYSTEM
multipack scenario

COMPONENT A x 6
- Bottle
- Label
- Cap

COMPONENT B x 1
- Carry case
reuse scenario

Waste Reduction Model
The entire package is reused and is refilled from another package (forms and capacity can vary).

Extended Life Model
A critical component(s) is reused while the rest of the components are discarded and replaced with a refill package.

Refill scenarios requiring washing or industrial cleaning are excluded.
distribution

<table>
<thead>
<tr>
<th>MODE</th>
<th>VEHICLE</th>
<th>DISTANCE:</th>
<th>FUEL:</th>
<th>DATA:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Road</td>
<td>relevant trucks to the region</td>
<td>km and m</td>
<td>diesel, gasoline, kerosene, other as available</td>
<td>USLCI and ecoinvent</td>
</tr>
<tr>
<td>Rail</td>
<td>freight train</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sea</td>
<td>barge and transoceanic freight ship</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Air</td>
<td>cargo plane</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
life cycle coverage in COMPASS
the web application
key features

• Compare up to four scenarios simultaneously
• View impact of components in relation to the package
• Assess life cycle consumption and emission metrics and key attributes
• Include distribution impacts
• Capture pertinent details in spreadsheet format
• Easy to use secure web-based application
• Assessment transparency with full documentation
• Detailed video tutorials
compare read-to-eat soup packaging

Primary Packages
- Can body
- Pull tab
- Paper label

Secondary Packages
with poly wrap
components in relation to package
life cycle impacts profile

Functional Unit of Comparison: 4 SERVING SIZE

- Manufacture
- Conversion
- Distribution
- End of life

Fossil Fuel
Water
Biotic Resources
Minerals

GHG
Human Health
Aquatic Toxicity
Eutrophication
packaging attributes

Packaging Attributes & Material Health

Functional Unit of Comparison:
4 SERVING SIZE

- 1 unit(s) of LAMINATED ASEPTIC PACK
- 4 unit(s) of MICROWAVABLE SOUP
- 2 unit(s) of STEEL CAN

Virgin or Recycled Content

Source Certification

Source Certification

Material Health

<table>
<thead>
<tr>
<th>Material Health</th>
<th>Weight</th>
<th>C</th>
<th>R</th>
<th>PBT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 unit(s) of LAMINATED ASEPTIC PACK</td>
<td>104.50g</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4.0 unit(s) of MICROWAVABLE SOUP</td>
<td>148.00g</td>
<td>5</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>2.0 unit(s) of STEEL CAN</td>
<td>69.00g</td>
<td>2</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

C: Carcinogen
R: Reproductive Toxicant
PBT: Persistent, Bioaccumulative, and Toxic
material health

<table>
<thead>
<tr>
<th>Material Health</th>
<th>Weight</th>
<th>C</th>
<th>R</th>
<th>PBT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0 unit(s) of LAMINATED ASEP TIC PACK</td>
<td>104.50g</td>
<td>4</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>CAP AND POUR SPOUT</td>
<td>4.00g</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Polypropylene (PP)</td>
<td>4.00g</td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Heavy fuel oil</td>
<td></td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Burned in industrial furnace; not present in final material</td>
<td></td>
<td>1</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>CARTON</td>
<td>100.00g</td>
<td>3</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>FOIL SEAL</td>
<td>0.50g</td>
<td>0</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>4.0 unit(s) of MICROWAVABLE SOUP</td>
<td>148.00g</td>
<td>5</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2.0 unit(s) of STEEL CAN</td>
<td>69.00g</td>
<td>2</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>
Project Info

Package Info

Summary Charts
- LC
- Attributes
- Components

Detail Sheets

Summary
Analysis sheets
Scenarios
transport model (being developed)

Add distribution related transport for components, packages and shipping the system to the DC
limitations and opportunities
discussion

• Limitations
 – Current and representative life cycle inventory (LCI)
 – Data transparency and uncertainty
 – Impact categories: water, human and eco-toxicity, land use

• Drivers
 – Retailer and corporate scorecards
 – Global Packaging Protocol for Sustainability (GPPS)
 – The Sustainability Consortium (TSC)

• Opportunities
 – Measurements ≠ Sustainability
 – Use LCA to improve environmental performance of package and product, DfE and/or DfR, not for making claims
 – Informing public policy
evidence of progress

• Emphasis
 – Material selection based on key environmental indicators
 – EoL outcome of design

• Corporate sustainability agenda
 – Baseline of packaging portfolio
 – Informing procurement policies
 – Material input efficiency and waste reduction
 – Environmental indicators as SOP

• Educational emphasis on design and LCA
 – RIT, MSU, Univ. of Florida

• International developments
pause for a quick demo
task: deliver 12 oz of juice product

Glass aluminum liquid paperboard composite plastic
COMPASS: https://design-compass.org
SPC: www.sustainablepackaging.org
GreenBlue: www.greenblue.org